
Learning Gradient Fields for Shape Generation

Ruojin Cai?, Guandao Yang?, Hadar Averbuch-Elor, Zekun Hao,
Serge Belongie, Noah Snavely, and Bharath Hariharan

Cornell University

Fig. 1. To generate shapes, we sample points from an arbitrary prior (depicting the
letters “E”, “C”, “C”, “V” in the examples above) and move them stochastically along
a learned gradient field, ultimately reaching the shape’s surface. Our learned fields also
enable extracting the surface of the shape, as demonstrated on the right.

Abstract. In this work, we propose a novel technique to generate shapes
from point cloud data. A point cloud can be viewed as samples from a
distribution of 3D points whose density is concentrated near the surface
of the shape. Point cloud generation thus amounts to moving randomly
sampled points to high-density areas. We generate point clouds by per-
forming stochastic gradient ascent on an unnormalized probability density,
thereby moving sampled points toward the high-likelihood regions. Our
model directly predicts the gradient of the log density field and can
be trained with a simple objective adapted from score-based generative
models. We show that our method can reach state-of-the-art perfor-
mance for point cloud auto-encoding and generation, while also allowing
for extraction of a high-quality implicit surface. Code is available at
https://github.com/RuojinCai/ShapeGF.

Keywords: 3D generation, generative models

? Equal contribution.

ar
X

iv
:2

00
8.

06
52

0v
2

 [
cs

.C
V

]
 1

8
A

ug
 2

02
0

https://github.com/RuojinCai/ShapeGF

2 Cai et al.

1 Introduction

Point clouds are becoming increasingly popular for modeling shapes, as many
modern 3D scanning devices process and output point clouds. As such, an
increasing number of applications rely on the recognition, manipulation, and
synthesis of point clouds. For example, an autonomous vehicle might need to
detect cars in sparse LiDAR point clouds. An augmented reality application
might need to scan in the environment. Artists may want to further manipulate
scanned objects to create new objects and designs. A prior for point clouds would
be useful for these applications as it can densify LiDAR clouds, create additional
training data for recognition, complete scanned objects or synthesize new ones.
Such a prior requires a powerful generative model for point clouds.

In this work, we are interested in learning a generative model that can
sample shapes represented as point clouds. A key challenge here is that point
clouds are sets of arbitrary size. Prior work often generates a fixed number of
points instead [2,18,68,52,17]. This number, however, may be insufficient for some
applications and shapes, or too computationally expensive for others. Instead,
following recent works [33,64,56], we consider a point cloud as a set of samples
from an underlying distribution of 3D points. This new perspective not only
allows one to generate an arbitrary number of points from a shape, but also
makes it possible to model shapes with varying topologies. However, it is not
clear how to best parameterize such a distribution of points, and how to learn it
using only a limited number of sampled points.

Prior research has explored modeling the distribution of points that repre-
sent the shape using generative adversarial networks (GANs) [33], flow-based
models [64], and autoregressive models [56]. While substantial progress has been
made, these methods have some inherent limitations for modeling the distribution
representing a 3D shape. The training procedure can be unstable for GANs or
prohibitively slow for invertible models, while autoregressive models assume an
ordering, restricting their flexibility for point cloud generation. Implicit represen-
tations such as DeepSDF [47] and OccupancyNet [39] can be viewed as modeling
this probability density of the 3D points directly, but these models require ground
truth signed distance fields or occupancy fields, which are difficult to obtain from
point cloud data alone without corresponding meshes.

In this paper, we take a different approach and focus on the end goal – being
able to draw an arbitrary number of samples from the distribution of points.
Working backward from this goal, we observe that the sampling procedure can be
viewed as moving points from a generic prior distribution towards high likelihood
regions of the shape (i.e., the surface of the shape). One way to achieve that is to
move points gradually, following the gradient direction, which indicates where the
density grows the most [61]. To perform such sampling, one only needs to model
the gradient of log-density (known as the Stein score function [36]). In this paper,
we propose to model a shape by learning the gradient field of its log-density. To
learn such a gradient field from a set of sampled points from the shape, we build
upon a denoising score matching framework [29,54]. Once we learn a model that

Learning Gradient Fields for Shape Generation 3

outputs the gradient field, the sampling procedure can be done using a variant of
stochastic gradient ascent (i.e. Langevin dynamics [61,54]).

Our method offers several advantages. First, our model is trained using
a simple L2 loss between the predicted and a “ground-truth” gradient field
estimated from the input point cloud. This objective is much simpler to optimize
than adversarial losses used in GAN-based techniques. Second, because it models
the gradient directly and does not need to produce a normalized distribution,
it imposes minimal restrictions on the model architecture in comparison to
flow-based or autoregressive models. This allows us to leverage more expressive
networks to model complicated distributions. Because the partition function
need not be estimated, our model is also much faster to train. Finally, our
model is able to furnish an implicit surface of the shape, as shown in Figure 1,
without requiring ground truth surfaces during training. We demonstrate that
our technique can achieve state-of-the-art performance in both point cloud auto-
encoding and generation. Moreover, our method can retain the same performance
when trained with much sparser point clouds.

Our key contributions can be summarized as follows:

– We propose a novel point cloud generation method by extending score-based
generative models to learn conditional distributions.

– We propose a novel algorithm to extract high-quality implicit surfaces from
the learned model without the supervision from ground truth meshes.

– We show that our model can achieve state-of-the-art performance for point
cloud auto-encoding and generation.

2 Related work

Point cloud generative modeling. Point clouds are widely used for representing
and generating 3D shapes due to their simplicity and direct relation to common
data acquisition techniques (LiDARs, depth cameras, etc.). Earlier generative
models either treat point clouds as a fixed-dimensional matrix (i.e. N×3 where N
is predefined) [2,18,67,56,68,17,52,59], or relies on heuristic set distance functions
such as Chamfer distance and Earth Mover Distance [25,65,19,12,6]. As pointed
out in Yang et al. [64] and Section 1, both of these approaches lead to several draw-
backs. Alternatively, we can model the point cloud as samples from a distribution
of 3D points. Toward this end, Sun et al. [56] applies an autoregressive model
to model the distribution of points, but it requires assuming an ordering while
generating points. Li et al. [33] applies a GAN [4,26] on both this distribution of
3D points as well as the distribution of shapes. PointFlow [64] applies normalizing
flow [46] to model such distribution, so sampling points amounts to moving them
to the surface according to a learned vector field. In addition to modeling the
movement of points, PointFlow also tracks the change of volume in order to
normalize the learned distribution, which is computationally expensive [9]. While
our work applies a GAN to learn the distribution of latent code similar to Li et
al. and Achilioptas et al., we take a different approach to model the distribution

4 Cai et al.

of 3D points. Specifically, we predict the gradient of log-density field to model
the non-normalized probability density, thus circumventing the need to compute
the partition function and achieves faster training time with a simple L2 loss.

Generating other 3D representations. Common representations emerged for deep
generative 3D modeling include voxel-based [23,63], mesh-based [3,48,20,27,35,57],
and assembly-based techniques [34,41]. Recently, implicit representations are
gaining increasing popularity, as they are capable of representing shapes with
high level of detail [47,39,11,40]. They also allow for learning a structured de-
composition of shapes, representing local regions with Gaussian functions [21,22]
or other primitives [58,53,28]. In order to reconstruct the mesh surface from the
learned implicit field, these methods require finding the zero iso-surface of the
learned occupancy field (e.g. using the Marching Cubes algorithm [37]). Our
learned gradient field also allows for high-quality surface reconstruction using
similar methods. However, we do not require prior information on the shape (e.g.,
signed distance values) for training, which typically requires a watertight input
mesh. Recently, SAL [5] learns a signed distance field using only point cloud
as supervision. Different from SAL, our model directly outputs the gradients
of the log-density instead field of the signed distance, which allows our model
to use arbitrary network architecture without any constraints. As a result, our
method can scale to more difficult settings such as train on larger dataset (e.g.
ShapeNet [7]) or train with sparse scanned point clouds.

Energy-based modeling. In contrast to flow-based models [50,13,30,9,24,64] and
auto-regressive models [56,43,45,44], energy-based models learn a non-normalized
probability distribution [31], thus avoid computation to estimate the partition
function. It has been successfully applied to tasks such as image segmentation
[16,15], where a normalized probability density function is hard to define. Score
matching was first proposed for modeling energy-based models in [29] and deals
with “matching” the model and the observed data log-density gradients, by
minimizing the squared distance between them. To improve its performance
and scalability, various extensions have been proposed, including denoising score
matching [60] and sliced score matching [55]. Most recently, Song and Ermon [54]
introduced data perturbation and annealed Langevin dynamics to the original
denoising score matching method, providing an effective way to model data
embedded on a low dimensional manifold. Their method was applied to the
image generation task, achieving performance comparable to GANs. In this work,
we extend this method to model conditional distributions and demonstrate its
suitability to the task of point cloud generation, viewing point clouds as samples
from the 2D manifold (shape surface) in 3D space.

3 Method

In this work, we are interested in learning a generative model that can sample
shapes represented as point clouds. Therefore, we need to model two distributions.

Learning Gradient Fields for Shape Generation 5

First, we need to model the distribution of shapes, which encode how shapes vary
across an entire collection of shapes. Once we can sample a particular shape of
interest, then we need a mechanism to sample a point clouds from its surface. As
previously discussed, a point cloud is best viewed as samples from a distribution
of 3D (or 2D) points, which encode a particular shape. To sample point clouds
of arbitrary size for this shape, we also need to model this distribution of points.

Specifically, we assume a set of shapes X = {X(i)}Ni=1 are provided as input.
Each shape in X is represented as a point cloud sampled from its surface, defined
by X(i) = {xij}Mi

j=1. Our goal is to learn both the distribution of shapes and the
distribution of points, conditioned on a particular shape from the data. To achieve
that, we first propose a model to learn the distribution of points encoding a shape
from a set of points X(i) (Section 3.1 - 3.5). Then we describe how to model the
distribution of shapes from the set of point clouds (i.e. X) in Section 3.6.

3.1 Shapes as a distribution of 3D points

We would like to define a distribution of 3D points P (x) such that sampling
from this distribution will provide us with a surface point cloud of the object.
Thus, the probability density encoding the shape should concentrate on the shape
surface. Let S be the set of points on the surface and PS(x) be the uniform
distribution over the surface. Sampling from PS(x) will create a point cloud
uniformly sampled from the surface of interest. However, this distribution is hard
to work with: for all points that are not in the surface x /∈ S, PS(x) = 0. As
a result, PS(x) is discontinuous and has usually zero support over its ambient
space (i.e. R3), which impose challenges in learning and modeling. Instead, we
approximate PS(x) by smoothing the distribution with a Gaussian kernel:

Qσ,S(x) =

∫
s∈R3

PS(s)N (x; s, σ2I)ds. (1)

As long as the standard deviation σ is small enough, Qσ,S(x) will approximate
the true data distribution PS(x) whose density concentrates near the surface.
Therefore, sampling from Qσ,S(x) will yield points near the surface S.

As discussed in Section 1, instead of modeling Qσ,S directly, we will model the
gradient of the logarithmic density (i.e. ∇x logQσ,S(x)). Sampling can then be
performed by starting from a prior distribution and performing gradient ascent
on this field, thus moving points to high probability regions.

In particular, we will model the gradient of the log-density using a neural
network gθ(x, σ), where x is a location in 3D (or 2D) space. We will first analyze
several properties of this gradient field ∇x logQσ,S(x). Then we describe how we
train this neural network and how we sample points using the trained network.

3.2 Analyzing the gradient field

In this section we provide an interpretation of how ∇x logQσ,S(x) behaves with
different σ’s. Computing a Monte Carlo approximation of Qσ,S(x) using a set of

6 Cai et al.

observations {xi}mi=1, we obtain a mixture of Gaussians with modes centered at
xi and radially-symmetric kernels:

Qσ,S(x) = Es∼PS
[
N (x; s, σ2I)

]
≈ 1

m

m∑
i=1

N (x;xi, σ
2I) , Aσ(x, {xi}mi=1).

The gradient field can thus be approximated by the gradient of the logarithmic
of this Gaussian mixture:

∇x logAσ(x, {xi}mi=1) =
1

σ2

(
−x+

m∑
i=1

xiwi(x, σ)

)
, (2)

where the weight wij(x, σ) is computed from a softmax with temperature 2σ2:

wi(x, σ) =
exp

(
− 1

2σ2 ‖x− xi‖2
)∑m

j=1 exp
(
− 1

2σ2 ‖x− xj‖2
) . (3)

Since
∑
i wi(x, σ) = 1,

∑
i xiwi(x, σ) falls within the convex hull created by

the sampled surface points {xi}mi=1. Therefore, the direction of this gradient of
the logarithmic density field points from the sampled location towards a point
inside the convex hull of the shape. When the temperature is high (i.e. σ is large),
then the weights wi(x, σ) will be roughly the same and

∑
i xiwi(x, σ) behaves

like averaging all the xi’s. Therefore, the gradient field will point to a coarse
shape that resembles an average of the surface points. When the temperature
is low (i.e. σ is small), then wi(x, σ) will be close to 0 except when xi is the
closest to x. As a result,

∑
i xiwi(x, σ) will behave like an argminxi ‖xi−x‖. The

gradient direction will thus point to the nearest point on the surface. In this
case, the norm of the gradient field approximates a distance field of the surface
up to a constant σ−2. This allows the gradient field to encode fine details of the
shape and move points to the shape surface more precisely. Figure 2 shows a
visualization of the field in the 2D case for a series of different σ’s.

3.3 Training objective

As mentioned in Section 3.1, we would like to train a deep neural network
gθ(x, σ) to model the gradient of log-density:∇x logQσ,S(x). One simple objective
achieving this is minimizing the L2 loss between them [29]:

`direct(σ, S) = Ex∼Qσ,S(x)
[

1

2
‖gθ(x, σ)−∇x logQσ,S(x)‖22

]
. (4)

However, optimizing such an objective is difficult as it is generally hard to
compute ∇x logQσ,S(x) from a finite set of observations.

Inspired by denoising score matching methods [60,54], we can write Qσ,S(x)
as a perturbation of the data distribution PS(x), produced with a Gaussian
noise with standard deviation σ. Specifically, Qσ,S(x) =

∫
PS(s)qσ(x̃|s)dx, where

Learning Gradient Fields for Shape Generation 7

qσ(x̃|s) = N (x̃|s, σ2I). As such, optimizing the objective in Equation 4 can be
shown to be equivalent to optimizing the following [60]:

`denoising(σ, S) = Es∼PS ,x̃∼qσ(x̃|s)
[

1

2
‖gθ(x̃, σ)−∇x̃ log qσ(x̃|s)‖22

]
. (5)

Since ∇x̃ log qσ(x̃|s) = s−x̃
σ2 , this loss can be easily computed using the observed

point cloud X = {xj}mj=1 as following:

`(σ,X) =
1

|X|
∑
xi∈X

‖gθ(x̃i, σ)− xi − x̃i
σ2

‖22, x̃i ∼ N (xi, σ
2I). (6)

Multiple noise levels. One problem with the abovementioned objective is that
most x̃i will concentrate near the surface if σ is small. Thus, points far away from
the surface will not be supervised. This can adversely affect the sampling quality,
especially when the prior distribution puts points to be far away from the surface.
To alleviate this issue, we follow Song and Ermon [54] and train gθ for multiple
σ’s, with σ1 ≥ · · · ≥ σk. Our final model is trained by jointly optimizing `(σi, X)
for all σi. The final objective is computed empirically as:

L({σi}ki=1, X) =

k∑
i=1

λ(σi)`(σi, X), (7)

where λ(σi) are parameters weighing the losses `(σi, X). λ(σi) is chosen so that
the weighted losses roughly have the same magnitude during training.

3.4 Point cloud sampling

Sampling a point cloud from the distribution is equivalent to moving points from
a prior distribution to the surface (i.e. the high-density region). Therefore, we can
perform stochastic gradient ascent on the logarithmic density field. Since gθ(x, σ)
approximates the gradient of the log-density field (i.e. ∇x logQσ,S(x)), we could
thus use gθ(x, σ) to update the point location x. In order for the points to reach
all the local maxima, we also need to inject random noise into this process. This
amounts to using Langevin dynamics to perform sampling [61].

Specifically, we first sample a point x0 from a prior distribution π. The
prior is usually chosen to be simple distribution such as a uniform or a Gaussian
distribution. We empirically demonstrate that the sampling performance won’t be
affected as long as the prior points are sampled from places where the perturbed
points would reach during training. We then perform the following recursive
update with step size α > 0:

xt+1 = xt +
α

2
gθ(xt, σ) +

√
αεt, εt ∼ N (0, I). (8)

Under mild conditions, p(xT) converges to the data distribution Qσ,S(x) as
T → ∞ and ε → 0 [61]. Even when such conditions fail to hold, the error in
Equation 8 is usually negligible when α is small and T is large [54,10,14,42].

8 Cai et al.

Fig. 2. Log density field with different σ (biggest to smallest) and a Langevin Dynamic
point update step with that σ. Deeper color indicates higher density. The ground truth
shape is shown in the upper left corner. Dotted line indicated Gaussian noise and solid
arrows indicates gradient step. As sigma decreases, the log-density field changes from
coarse to fine, and points are moved closer to the surface.

Prior works have observed that a main challenge for using Langevin dynamics
is its slow mixing time [54,62]. To alleviate this issue, Song and Ermon [54]
propose an annealed version of Langevin dynamics, which gradually anneals
the noise for the score function. Specifically, we first define a list of σi with
σ1 ≥ · · · ≥ σk, then train one single denoising score matching model that could
approximate qσi for all i. Then, annealed Langevin dynamics will recursively
compute the xt while gradually decreasing σi:

x′t+1 = xt +

√
ασiεt
σk

, εt ∼ N (0, I), (9)

xt+1 = x′t+1 +
ασ2

i

2σ2
k

gθ(x
′
t+1, σi). (10)

Figure 2 demonstrates the sampling across the annealing process in a 2D point
cloud. As discussed in Section 3.3, larger σ’s correspond to coarse shapes while
smaller σ’s correspond to fine shape. Thus, this annealed Langevin dynamics can
be thought of as a coarse-to-fine refinement of the shape. Note that we make the
noise perturnbation step before the gradient update step, which leads to cleaner
point clouds. The supplementary material contains detailed hyperparameters.

3.5 Implicit surface extraction

Next we show that our learned gradient field (e.g. gθ) also allows for obtaining
an implicit surface. The key insight here is that the surface is defined as the set
of points that reach the maximum density in the data distribution PS(x), and
thus these points have zero gradient. Another interpretation is that when σ is
small enough (i.e. Qσ,S(x) approximates the true data distribution p(x)), the
gradient for points near the surface will point to its nearest point on the surface,

Learning Gradient Fields for Shape Generation 9

𝑓𝑓𝜙𝜙
𝑋𝑋

ℎ𝜉𝜉
1
1

ℒGAN𝑑𝑑𝛾𝛾

𝑧𝑧

�̃�𝑧

𝑓𝑓𝜙𝜙 𝑧𝑧 𝑔𝑔𝜃𝜃

ℒAE

𝑋𝑋

∇ log 𝑞𝑞𝜎𝜎 �𝑥𝑥𝑖𝑖|𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖 ⊕ �𝑥𝑥𝑖𝑖 �𝑥𝑥𝑖𝑖

�𝑥𝑥𝑖𝑖

𝜎𝜎

Shape auto-encoding Shape generation

Fig. 3. Illustration of training pipe for shape auto-encoding and generation.

as described in Section 3.2:

gθ(x, σ) ≈ 1

σ2
(−x+ argmins∈S ‖x− s‖) . (11)

Thus, for a point near the surface, its norm equals zero if and only if x ∈ S
(provided the arg min is unique). Therefore, the shape can be approximated by
the zero iso-surface of the gradient norm:

S ≈ {x | ‖gθ(x, σ)‖ = δ}, (12)

for some δ > 0 that is sufficiently small. One caveat is that points for which
the arg min in Equation 11 is not unique may also have a zero gradient. These
correspond to local minimas of the likelihood. In practice, this is seldom a problem
for surface extraction, and it is possible to discard these regions by conducting
the second partial derivative test.

Also as mentioned in Section 3.2, when the σ is small, the norm of the gradient
field approximates a distance field of the surface, scaled by a constant σ−2. This
allows us to retrieval the surface S efficiently using an off-the-shelf ray-casting
technique [51] (see Figures 1,4,5).

3.6 Generating multiple shapes

In the previous sections, we focused on learning the distribution of points that
represent a single shape. Our next goal is to model the distribution of shapes.
We, therefore, introduce a latent code z to encode which specific shape we want
to sample point clouds from. Furthermore, we adapt our gradient decoder to be
conditional on the latent code z (in addition to σ and the sampled point).

As illustrated in Figure 3, the training is conducted in two stages. We first
train an auto-encoder with an encoder fφ that takes a point cloud and outputs
the latent code z. The gradient decoder is provided with z as input and produces
a gradient field with noise level σ. The auto-encoding loss is thus:

LAE(X) = E
X∼X

 1

2|X|
∑

x∈X,σi

λ(σi)

∥∥∥∥gθ(x̃, fφ(X), σi)−
x− x̃
σ2
i

∥∥∥∥2
2

 , (13)

10 Cai et al.

where each x̃j is drawn from a N (xj , σ
2
i I) for a corresponding σi. This first

stage provides us with a network that can model the distribution of points
representing the shape encoded in the latent variable z. Once the auto-encoder is
fully trained, we apply a latent-GAN [2] to learn the distribution of the latent code
p(z) = p(fφ(X)), where X is a point cloud sampled from the data distribution.
Doing so provides us with a generator hξ that can sample a latent code from
p(z), allowing us control over which shape will be generated. To sample a novel
shape, we first sample a latent code z̃ using hξ. We can then use the trained
gradient decoder gθ to sample point clouds or extract an implicit surface from
the shape represented as z. For more details about hyperparameters and model
architecture, please refer to the supplementary material.

4 Experiments

In this section, we will evaluate our model’s performance in point cloud auto-
encoding (Sec 4.1), up-sampling (Sec 4.1), and generation (Sec 4.2) tasks. Finally,
we present an ablation study examining our model design choices (Sec 4.3).
Implementation details will be shown in the supplementary materials.

Datasets Our experiments focus mainly on two datasets: MNIST-CP and
ShapeNet. MNIST-CP was recently proposed by Yifan et al. [66] and consists of
2D contour points extracted from the MNIST [32] dataset, which contains 50K
and 10K training and testing images. Each point cloud contains 800 points. The
ShapeNet [8] dataset contains 35708 shapes in training set and 5158 shapes in
test set, capturing 55 categories. For our method, we normalize all point clouds
by centering their bounding boxes to the origin and scaling them by a constant
such that all points range within the cube [−1, 1]3 (or the square in the 2D case).

Evaluation metrics Following prior works [64,25,2], we use the symmetric
Chamfer Distance (CD) and the Earth Mover’s Distance (EMD) to evaluate the
reconstruction quality of the point clouds. To evaluate the generation quality, we
use metrics in Yang et al. [64] and Achlioptas et al. [2]. Specifically, Achilioptas et
al. [2] suggest using Minimum Matching Distance (MMD) to measure fidelity of
the generated point cloud and Coverage (COV) to measure whether the set of
generated samples cover all the modes of the data distribution. Yang et al. [64]
propose to use the accuracy of a k-NN classifier performing two-sample tests.
The idea is that if the sampled shapes seem to be drawn from the actual data
distribution, then the classifier will perform like a random guess (i.e. results in
50% accuracy). To evaluate our results, we first conduct per-shape normalization
to center the bounding box of the shape and scale its longest length to be 2,
which allows the metric to focus on the geometry of the shape and not the scale.

4.1 Shape auto-encoding

In this section, we evaluate how well our model can learn the underlying dis-
tribution of points by asking it to auto-encode a point cloud. We conduct the

Learning Gradient Fields for Shape Generation 11

Fig. 4. Shape auto-encoding test results. Our model can accurately reconstruct shapes
given 2048 points (left) or only 256 points (right) describing the shape. Output point
clouds are illustrated in the center and implicit surfaces on the left.

auto-encoding task for five settings: all 2D point clouds in MNIST-CP, 3D point
clouds on the whole ShapeNet, and three categories in ShapeNet (Airplane, Car,
Chair). In this experiment, our method is compared with the current state-of-the-
art AtlasNet [25] with patches and with sphere. Furthermore, we also compare
against Achilioptas et al. [2] which predicts point clouds as a fixed-dimensional
array, and PointFlow [64] which uses a flow-based model to represent the distri-
bution. We follow the experiment set-up in PointFlow to report performance in
both CD and EMD in Table 1. Since these two metrics depend on the scale of the
point clouds, we also report the upper bound in the “oracle” column. The upper
bound is produced by computing the error between two different point clouds
with the same number of points sampled from the same underlying meshes.

Our method consistently outperforms all other methods on the EMD metric,
which suggests that our point samples follow the distribution or they are more
uniformly distributed among the surface. Note that our method outperforms
PointFlow in both CD and EMD for all datasets, but requires much less time to
train. Our training for the Airplane category can be completed in about less than
10 hours, yet reproducing the results for PointFlow’s pretrained model takes at
least two days. Our method can even sometimes outperform Achilioptas et al.and
AtlasNet in CD, which is the loss they are directly optimizing at.

12 Cai et al.

Table 1. Shape auto-encoding on the MNIST-CP and ShapeNet datasets. The best
results are highlighted in bold. CD is multiplied by 104 and EMD is multiplied by 102.

l-GAN [2] AtlasNet [25]
PF [64] Ours Oracle

Dataset Metric CD EMD Sphere Patches

MNIST-CP
CD 8.204 - 7.274 4.926 17.894 2.669 1.012

EMD 40.610 - 19.920 15.970 8.705 7.341 4.875

Airplane
CD 1.020 1.196 1.002 0.969 1.208 0.96 0.837

EMD 4.089 2.577 2.672 2.612 2.757 2.562 2.062

Chair
CD 9.279 11.21 6.564 6.693 10.120 5.599 3.201

EMD 8.235 6.053 5.790 5.509 6.434 4.917 3.297

Car
CD 5.802 6.486 5.392 5.441 6.531 5.328 3.904

EMD 5.790 4.780 4.587 4.570 5.138 4.409 3.251

ShapeNet
CD 7.120 8.850 5.301 5.121 7.551 5.154 3.031

EMD 7.950 5.260 5.553 5.493 5.176 4.603 3.103

Table 2. Auto-encoding sparse point clouds. We randomly sample N points from each
shape (in the Airplane dataset). During training, the model is provided with M points
(the columns). CD is multiplied by 104 and EMD is multiplied by 102.

CD EMD

N 2048 1024 512 256 128 2048 1024 512 256 128

10K 0.993 1.057 0.999 1.136 1.688 2.463 2.608 2.589 3.042 3.715
3K 1.080 1.059 1.003 1.142 1.753 2.533 2.586 2.557 2.997 3.878
1K - - 1.021 1.149 1.691 - - 2.565 2.943 3.633

Point cloud upsampling We conduct a set of experiments on subsampled
ShapeNet point clouds. These experiments are primarily focused on showing that
(i) our model can learn from sparser datasets, and that (ii) we can infer a dense
shape from a sparse input. In the regular configuration (reported above), we learn
from N = 10K points which are uniformly sampled from each shape mesh model.
During training, we sample M = 2048 points (from the 10K available in total)
to be the input point cloud. To evaluate our model, we perform the Langevin
dynamic procedure (described in Section 3.4) over 2048 points sampled from the
prior distribution and compare these to 2048 points from the reference set.

To evaluate whether our model can effectively upsample point clouds and
learn from a sparse input, we train models with N = [1K, 3K, 10K] and M =
[128, 256, 512, 1024, 2048] on the Airplane dataset. To allow for a fair comparison,
we evaluate all models using the same number of output points (i.e. 2048 points
are sampled from the prior distribution in all cases). As illustrated in Table 2, we
obtain comparable auto-encoding performance while training with significantly
sparser shapes. Interestingly, the number of points available from the model (i.e.
N) does not seem to affect performance, suggesting that we can indeed learn

Learning Gradient Fields for Shape Generation 13

r-GAN CGN Tree PF Ours

Fig. 5. Generation results. We shown results from r-GAN, GCN, TreeGAN (Tree), and
PointFlow (PF) are illustrated on the left for comparison. Generated point clouds are
illustrated alongside the corresponding implicit surfaces.

from sparser datasets. Several qualitative examples auto-encoding shapes from
the regular and sparse configurations are shown in Figure 4. We also demonstrate
that our model can also provide a smooth iso-surface, even when only a sparse
point cloud (i.e. 256 points) is provided as input.

4.2 Shape generation

We quantitatively compare our method’s performance on shape generation with
r-GAN [2], GCN-GAN [59], TreeGAN [52], and PointFlow [64]. We use the same
experiment setup as PointFlow except for the data normalization before the
evaluation. The generation results are reported in Table 3. Though our model
requires a two-stage training, the training can be done within one day with a
1080 Ti GPU, while reproducing PointFlow’s results requires training for at least
two days on the same hardware. Despite using much less training time, our model
achieves comparable performance to PointFlow, the current state-of-the-art. As
demonstrated in Figure 5, our generated shapes are also visually cleaner.

4.3 Ablation study

We conduct an ablation study quantifying the importance of learning with
multiple noise levels. As detailed in Sections 3.3-3.4, we train sθ for multiple σ’s.
During inference, we sample point clouds using an annealed Langevin dynamics
procedure, using the same σ’s seen during training. In Table 4 we show results
for models trained with a single noise level and tested without annealing. As
illustrated in the table, the model does not perform as well when learning using
a single noise level only. This is especially noticeable for the model trained on
the smallest noise level in our model (σ = 0.01), as large regions in space are left
unsupervised, resulting in significant errors.

We also demonstrate that our model is insensitive to the choice of the prior
distribution. We repeat the inference procedure for our auto-encoding experiment,
initializing the prior points with a Gaussian distribution or in a fixed location
(using the same trained model). Results are reported on the right side of Table
4. Different prior configurations don’t affect the performance, which is expected

14 Cai et al.

Table 3. Shape generation results. ↑ means the higher the better, ↓ means the lower
the better. MMD-CD is multiplied by 103 and MMD-EMD is multiplied by 102.

MMD (↓) COV (%, ↑) 1-NNA (%, ↓)

Category Model CD EMD CD EMD CD EMD

Airplane

r-GAN [2] 1.657 13.287 38.52 19.75 95.80 100.00
GCN [59] 2.623 15.535 9.38 5.93 95.16 99.12
Tree [52] 1.466 16.662 44.69 6.91 95.06 100.00
PF [64] 1.408 7.576 39.51 41.98 83.21 82.22
Ours 1.285 7.364 47.65 41.98 85.06 83.46

Train 1.288 7.036 45.43 45.43 72.10 69.38

Chair

r-GAN [2] 18.187 32.688 19.49 8.31 84.82 99.92
GCN [59] 23.098 25.781 6.95 6.34 86.52 96.48
Tree [52] 16.147 36.545 40.33 8.76 74.55 99.92
PF [64] 15.027 19.190 40.94 44.41 67.60 72.28
Ours 14.818 18.791 46.37 46.22 66.16 59.82

Train 15.893 18.472 50.45 52.11 53.93 54.15

Table 4. Ablation study comparing auto-encoding performance on the Airplane dataset.
CD is multiplied by 104 and EMD is multiplied by 102.

Single noise level Prior distribution

Metric 0.1 0.05 0.01 Uniform Fixed Gaussian

CD 2.545 1.573 1009.357 0.993 0.993 0.996
EMD 4.400 8.455 36.715 2.463 2.476 2.475

due to the stochastic nature of our solution. We further demonstrate our model’s
robustness to the prior distribution in Figure 1, where the prior depicts 3D
letters.

5 Conclusions

In this work, we propose a generative model for point clouds which learns the
gradient field of the logarithmic density function encoding a shape. Our method
not only allows sampling of high-quality point clouds, but also enables extraction
of the underlying surface of the shape. We demonstrate the effectiveness of our
model on point cloud auto-encoding, generation, and super-resolution. Future
work includes extending our work to model texture, appearance, and scenes.

Acknowledgment. This work was supported in part by grants from Magic
Leap and Facebook AI, and the Zuckerman STEM leadership program.

Learning Gradient Fields for Shape Generation 15

References

1. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations
and generative models for 3d point clouds. arXiv preprint arXiv:1707.02392 (2017)
25, 28

2. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations
and generative models for 3d point clouds. In: ICML (2018) 2, 3, 10, 11, 12, 13, 14,
24, 25, 26

3. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape:
shape completion and animation of people. In: ACM SIGGRAPH 2005 Papers, pp.
408–416 (2005) 4

4. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks.
In: ICML (2017) 3

5. Atzmon, M., Lipman, Y.: Sal: Sign agnostic learning of shapes from raw data.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 2565–2574 (2020) 4

6. Ben-Hamu, H., Maron, H., Kezurer, I., Avineri, G., Lipman, Y.: Multi-chart gener-
ative surface modeling. ACM Transactions on Graphics (TOG) 37(6), 1–15 (2018)
3

7. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese,
S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., Yu, F.: ShapeNet: An Information-
Rich 3D Model Repository. Tech. Rep. arXiv:1512.03012 [cs.GR], Stanford Univer-
sity — Princeton University — Toyota Technological Institute at Chicago (2015) 4,
24

8. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese,
S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich 3d model
repository. arXiv preprint arXiv:1512.03012 (2015) 10, 24

9. Chen, T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary
differential equations. In: NeurIPS (2018) 3, 4

10. Chen, T., Fox, E., Guestrin, C.: Stochastic gradient hamiltonian monte carlo. In:
International conference on machine learning. pp. 1683–1691 (2014) 7

11. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 5939–5948 (2019) 4, 26

12. Deprelle, T., Groueix, T., Fisher, M., Kim, V., Russell, B., Aubry, M.: Learning
elementary structures for 3d shape generation and matching. In: Advances in Neural
Information Processing Systems. pp. 7433–7443 (2019) 3

13. Dinh, L., Krueger, D., Bengio, Y.: Nice: Non-linear independent components esti-
mation. CoRR abs/1410.8516 (2014) 4

14. Du, Y., Mordatch, I.: Implicit generation and generalization in energy-based models.
arXiv preprint arXiv:1903.08689 (2019) 7

15. Fan, A., Fisher III, J.W., Kane, J., Willsky, A.S.: Mcmc curve sampling and
geometric conditional simulation. In: Computational Imaging VI. vol. 6814, p.
681407. International Society for Optics and Photonics (2008) 4

16. Fan, A.C., Fisher, J.W., Wells, W.M., Levitt, J.J., Willsky, A.S.: Mcmc curve
sampling for image segmentation. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. pp. 477–485. Springer (2007) 4

17. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3d object recon-
struction from a single image. In: CVPR (2017) 2, 3

16 Cai et al.

18. Gadelha, M., Wang, R., Maji, S.: Multiresolution tree networks for 3d point
cloud processing. In: Proceedings of the European Conference on Computer Vision
(ECCV). pp. 103–118 (2018) 2, 3

19. Gadelha, M., Wang, R., Maji, S.: Multiresolution tree networks for 3d point cloud
processing. In: ECCV (2018) 3

20. Gao, L., Yang, J., Wu, T., Yuan, Y.J., Fu, H., Lai, Y.K., Zhang, H.: Sdm-net: Deep
generative network for structured deformable mesh. ACM Transactions on Graphics
(TOG) 38(6), 1–15 (2019) 4

21. Genova, K., Cole, F., Sud, A., Sarna, A., Funkhouser, T.: Deep structured implicit
functions. arXiv preprint arXiv:1912.06126 (2019) 4

22. Genova, K., Cole, F., Vlasic, D., Sarna, A., Freeman, W.T., Funkhouser, T.: Learning
shape templates with structured implicit functions. In: Proceedings of the IEEE
International Conference on Computer Vision. pp. 7154–7164 (2019) 4

23. Girdhar, R., Fouhey, D.F., Rodriguez, M., Gupta, A.: Learning a predictable and
generative vector representation for objects. In: European Conference on Computer
Vision. pp. 484–499. Springer (2016) 4

24. Grathwohl, W., Chen, R.T.Q., Bettencourt, J., Sutskever, I., Duvenaud, D.: Ffjord:
Free-form continuous dynamics for scalable reversible generative models. In: ICLR
(2019) 4

25. Groueix, T., Fisher, M., Kim, V.G., Russell, B., Aubry, M.: AtlasNet: A Papier-
Mâché Approach to Learning 3D Surface Generation. In: CVPR (2018) 3, 10, 11,
12, 24

26. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of wasserstein gans. In: NeurIPS (2017) 3, 23

27. Hanocka, R., Hertz, A., Fish, N., Giryes, R., Fleishman, S., Cohen-Or, D.: Meshcnn:
a network with an edge. ACM Transactions on Graphics (TOG) 38(4), 1–12 (2019)
4

28. Hao, Z., Averbuch-Elor, H., Snavely, N., Belongie, S.: Dualsdf: Semantic shape
manipulation using a two-level representation. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 7631–7641 (2020) 4

29. Hyvärinen, A.: Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research 6(Apr), 695–709 (2005) 2, 4, 6

30. Kingma, D.P., Dhariwal, P.: Glow: Generative flow with invertible 1x1 convolutions.
In: NeurIPS (2018) 4

31. LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., Huang, F.: A tutorial on energy-
based learning. Predicting structured data 1(0) (2006) 4

32. LeCun, Y., Cortes, C., Burges, C.: Mnist handwritten digit database (2010) 10
33. Li, C.L., Zaheer, M., Zhang, Y., Poczos, B., Salakhutdinov, R.: Point cloud gan.

arXiv preprint arXiv:1810.05795 (2018) 2, 3
34. Li, J., Xu, K., Chaudhuri, S., Yumer, E., Zhang, H., Guibas, L.: Grass: Generative

recursive autoencoders for shape structures. ACM Transactions on Graphics (TOG)
36(4), 1–14 (2017) 4

35. Litany, O., Bronstein, A., Bronstein, M., Makadia, A.: Deformable shape completion
with graph convolutional autoencoders. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 1886–1895 (2018) 4

36. Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests.
In: International conference on machine learning. pp. 276–284 (2016) 2

37. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface con-
struction algorithm. ACM siggraph computer graphics 21(4), 163–169 (1987) 4

38. Maaten, L.v.d., Hinton, G.: Visualizing data using t-sne. Journal of machine learning
research 9(Nov), 2579–2605 (2008) 29

Learning Gradient Fields for Shape Generation 17

39. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
networks: Learning 3d reconstruction in function space. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. pp. 4460–4470
(2019) 2, 4, 23, 26

40. Michalkiewicz, M., Pontes, J.K., Jack, D., Baktashmotlagh, M., Eriksson, A.: Deep
level sets: Implicit surface representations for 3d shape inference. arXiv preprint
arXiv:1901.06802 (2019) 4

41. Mo, K., Guerrero, P., Yi, L., Su, H., Wonka, P., Mitra, N., Guibas, L.J.: Struc-
turenet: Hierarchical graph networks for 3d shape generation. arXiv preprint
arXiv:1908.00575 (2019) 4

42. Nijkamp, E., Hill, M., Han, T., Zhu, S.C., Wu, Y.N.: On the anatomy of
mcmc-based maximum likelihood learning of energy-based models. arXiv preprint
arXiv:1903.12370 (2019) 7

43. Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.:
Conditional image generation with pixelcnn decoders. In: NeurIPS (2016) 4

44. Oord, A.v.d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalch-
brenner, N., Senior, A., Kavukcuoglu, K.: Wavenet: A generative model for raw
audio. arXiv preprint arXiv:1609.03499 (2016) 4

45. Oord, A.v.d., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks.
In: ICML (2016) 4

46. Papamakarios, G., Nalisnick, E., Rezende, D.J., Mohamed, S., Lakshminarayanan,
B.: Normalizing flows for probabilistic modeling and inference. arXiv preprint
arXiv:1912.02762 (2019) 3

47. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: Learning
continuous signed distance functions for shape representation. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. pp. 165–174
(2019) 2, 4, 26, 27

48. Pons-Moll, G., Romero, J., Mahmood, N., Black, M.J.: Dyna: A model of dynamic
human shape in motion. ACM Transactions on Graphics (TOG) 34(4), 1–14 (2015)
4

49. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d
classification and segmentation. In: CVPR (2017) 22

50. Rezende, D.J., Mohamed, S.: Variational inference with normalizing flows. In: ICML
(2015) 4

51. Roth, S.D.: Ray casting for modeling solids. Computer graphics and image processing
18(2), 109–144 (1982) 9, 19

52. Shu, D.W., Park, S.W., Kwon, J.: 3d point cloud generative adversarial network
based on tree structured graph convolutions. In: Proceedings of the IEEE In-
ternational Conference on Computer Vision. pp. 3859–3868 (2019) 2, 3, 13, 14,
25

53. Smirnov, D., Fisher, M., Kim, V.G., Zhang, R., Solomon, J.: Deep parametric shape
predictions using distance fields. arXiv preprint arXiv:1904.08921 (2019) 4

54. Song, Y., Ermon, S.: Generative modeling by estimating gradients of the data
distribution. In: Advances in Neural Information Processing Systems. pp. 11895–
11907 (2019) 2, 3, 4, 6, 7, 8

55. Song, Y., Garg, S., Shi, J., Ermon, S.: Sliced score matching: A scalable approach
to density and score estimation. arXiv preprint arXiv:1905.07088 (2019) 4

56. Sun, Y., Wang, Y., Liu, Z., Siegel, J.E., Sarma, S.E.: Pointgrow: Autoregressively
learned point cloud generation with self-attention. arXiv preprint arXiv:1810.05591
(2018) 2, 3, 4

18 Cai et al.

57. Tan, Q., Gao, L., Lai, Y.K., Xia, S.: Variational autoencoders for deforming 3d
mesh models. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 5841–5850 (2018) 4

58. Tulsiani, S., Su, H., Guibas, L.J., Efros, A.A., Malik, J.: Learning shape abstractions
by assembling volumetric primitives. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 2635–2643 (2017) 4

59. Valsesia, D., Fracastoro, G., Magli, E.: Learning localized generative models for 3d
point clouds via graph convolution (2018) 3, 13, 14, 24, 25

60. Vincent, P.: A connection between score matching and denoising autoencoders.
Neural computation 23(7), 1661–1674 (2011) 4, 6, 7, 21

61. Welling, M., Teh, Y.W.: Bayesian learning via stochastic gradient langevin dynamics.
In: Proceedings of the 28th international conference on machine learning (ICML-11).
pp. 681–688 (2011) 2, 3, 7

62. Wenliang, L., Sutherland, D., Strathmann, H., Gretton, A.: Learning deep kernels
for exponential family densities. arXiv preprint arXiv:1811.08357 (2018) 8

63. Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J.: Learning a probabilistic
latent space of object shapes via 3d generative-adversarial modeling. In: Advances
in neural information processing systems. pp. 82–90 (2016) 4

64. Yang, G., Huang, X., Hao, Z., Liu, M.Y., Belongie, S., Hariharan, B.: Pointflow: 3d
point cloud generation with continuous normalizing flows. In: Proceedings of the
IEEE International Conference on Computer Vision. pp. 4541–4550 (2019) 2, 3, 4,
10, 11, 12, 13, 14, 24, 25, 26

65. Yang, Y., Feng, C., Shen, Y., Tian, D.: Foldingnet: Point cloud auto-encoder via
deep grid deformation. In: CVPR (2018) 3

66. Yifan, W., Wu, S., Huang, H., Cohen-Or, D., Sorkine-Hornung, O.: Patch-based
progressive 3d point set upsampling. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 5958–5967 (2019) 10, 28

67. Zamorski, M., Zieba, M., Nowak, R., Stokowiec, W., Trzcinski, T.: Adversarial
autoencoders for generating 3d point clouds. arXiv preprint arXiv:1811.07605 2
(2018) 3

68. Zamorski, M., Zieba, M., Nowak, R., Stokowiec, W., Trzciński, T.: Adversarial
autoencoders for generating 3d point clouds. arXiv preprint arXiv:1811.07605 (2018)
2, 3

Learning Gradient Fields for Shape Generation 19

A Overview

In this appendix, we provide additional method details, implementation details,
experimental results, and qualitative results visualizations.

1. Section B Method Details - Additional details about the method including
algorithm blocks of training, inference and surface extraction, and the proof
of equivalent objective function.

2. Section C Implementation Details - Description of the network architecture,
experimental setting, and implementation details.

3. Section D Additional Quantitative Results - More quantitative results on
shape generation and implicit surface tasks, comparing our model with
additional baselines.

4. Section E Additional Ablation Studies - Results of additional ablation studies.
5. Section F Additional Qualitative Results - Additional qualitative results on

scanned data, visualization of latent space, and extended visualizations for
2D and 3D point clouds.

B Method Details

In this section, we provide extensive details of our method. We provide detailed
explanations for training and inference in Section B.1. More details about surface
extraction are provided in Section B.2. Finally, a mathematical proof about our
objective function is shown in Section B.3.

B.1 Training and inference

We provide algorithm blocks to better illustrate the training and inference proce-
dures. See Algorithm 1 and Algorithm 2 for training and inference, respectively.
Please refer to Section C for hyper-parameters and neural network architectures.

B.2 Surface extraction

We use a modified version of the volumetric ray casting algorithm [51] to render
the iso-surface produced by the learned gradient field. Algorithm 3 below shows
the rendering process of a single pixel. For each pixel in the rendered image, we
cast a ray 〈o0, u〉 towards the gradient field according to the camera model. We
advance the ray for a fixed number of steps kmax. For reasonable choices of the
step rate γ, the ray will either converge to the iso-surface, or miss the iso-surface
and march towards infinity. If the ray does reach the iso-surface, we calculate
the RGB values for that pixel based on its 3D location and surface normal. If
the ray misses the surface, we assign the pixel with background color ybg. In this
paper, we use γ = 1.0, kmax = 64 and δ = 0.005.

20 Cai et al.

Algorithm 1 Training.

Require: Noise levels {σi}ki=1; Weight for noise levels’ loss λ(σi); Point cloud encoder
fφ; A neural network sθ; Total number of training iterations T ; Point cloud Xt

1: for t← 1 to T do
2: z ← fφ(Xt)
3: for σ ∈ {σi}ki=1 do
4: for xi ∈ Xt do
5: x̃i ← xi +N(0, σ2I)
6: end for
7: `(σ,Xt)← 1

|Xt|
∑
xi∈Xt ‖gθ(x̃i, σ, z)−

xi−x̃i
σ2 ‖22

8: end for
9: L({σi}ki=1, Xt)←

∑k
i=1 λ(σi)`(σi, Xt)

10: φ, θ ← Adam(L, φ, θ)
11: end for
12: return fφ, sθ

Algorithm 2 Annealed Langevin dynamics.

Require: Noise levels {σi}ki=1; Step size α; Number of steps T
1: Initialize x0
2: for i← 1 to k do
3: for t← 0 to T − 1 do
4: εt ∼ N (0, I)

5: x′t+1 ← xt +
√
ασiεt
σk

6: xt+1 ← x′t+1 +
ασ2
i

2σ2
k
gθ(x

′
t+1, σi)

7: end for
8: x0 ← xT
9: end for

10: return xT

Algorithm 3 Ray Casting for Rendering the Iso-surface.

Require: Neural network sθ; Minimum noise level σk; Initial ray origin o0; Ray direction
u; Maximum ray travel dmax; Step rate γ; Number of steps kmax; Iso-surface level
δ; Background color ybg

1: d = 0
2: for k ← 1 to kmax do
3: x← o0 + du
4: d← d+ γ(‖sθ(x, σk)‖ − δ)
5: end for
6: if d < dmax then
7: n← − sθ(x,σk)

‖sθ(x,σk)‖
8: y ← Shading(x, n)
9: else

10: y ← ybg
11: end if
12: return y

Learning Gradient Fields for Shape Generation 21

B.3 Objective Function

Here, we provide a proof to show that optimizing `direct(σ, S) (Equation 4 in
the main paper) is equivalent to optimizing `denoising(σ, S) (Equation 5 in the
main paper). The proof is largely similar to the one in the Appendix in Vincent
2010 [60]. We will re-visit the prove here using the notation from our paper for
convenience of the readers.

Theorem 1. Optimizing `denoise(σ, S) leads to the same θ as optimizing `denoise(σ, S).

Proof. We want to show that `direct(σ, S) = `denoise(σ, S) + C for some constant
C that doesn’t depend on θ. Note that `denoise can be decomposed as follows:

`denoise(σ, S) = Ex∼PS ,x̃∼qσ(x̃|x)
[

1

2
‖gθ(x̃, σ)‖2

]
− Ex∼PS ,x̃∼qσ(x̃|x)

[
gθ(x̃, σ)T∇x̃ log qσ(x̃|x)

]
+ C1, (14)

where C1 = Ex∼PS ,x̃∼qσ(x̃|s)
[
1
2 ‖∇x̃ log qσ(x̃|x)‖2

]
. Similarly, we can decompose

`direct as follows:

`direct(σ, S) = Ex∼Qσ,S
[

1

2
‖gθ(x, σ)‖2

]
− Ex∼Qσ,S

[
gθ(x, σ)T∇x logQσ,S(x)

]
+ C2, (15)

where C2 = Ex∼Qσ,S
[
1
2‖∇x logQσ,S(x)‖2

]
. Now we will compare the first two

terms of Equation 14 and Equation 15 to show they are the same. Looking at
the first terms:

Es∼PS ,x̃∼qσ(x̃|s)
[

1

2
‖gθ(x̃, σ)‖2

]
=

1

2

∫
x

PS(x)

∫
x̃

qσ(x̃|x)‖gθ(x̃, σ)‖2dx̃dx

=
1

2

∫
x̃

∫
x

PS(x)qσ(x̃|x)‖gθ(x̃, σ)‖2dxdx̃

=
1

2

∫
x̃

‖gθ(x̃, σ)‖2
∫
x

PS(x)qσ(x̃|x)dxdx̃

=
1

2

∫
x̃

‖gθ(x̃, σ)‖2Qσ,S(x̃)dx̃

(
since Qσ,S(x) =

∫
y

PS(y)qσ(x|y)dy

)
= Ex∼Qσ,S

[
1

2
‖gθ(x, σ)‖2

]
.

22 Cai et al.

Looking at the second terms:

Ex∼PS ,x̃∼qσ(x̃|x)
[
gθ(x̃, σ)T∇x̃ log qσ(x̃|x)

]
=

∫
x

PS(x)

∫
x̃

qσ(x̃|x)gθ(x̃, σ)T∇x̃ log qσ(x̃|x)dx̃dx

=

∫
x̃

∫
x

PS(x)qσ(x̃|x)gθ(x̃, σ)T∇x̃ log qσ(x̃|x)dxdx̃

=

∫
x̃

gθ(x̃, σ)T
∫
x

PS(x)qσ(x̃|x)∇x̃ log qσ(x̃|x)dxdx̃

=

∫
x̃

gθ(x̃, σ)T
∫
x

PS(x)qσ(x̃|x)
∇x̃qσ(x̃|x)

qσ(x̃|x)
dxdx̃

=

∫
x̃

gθ(x̃, σ)T
∫
x

PS(x)∇x̃qσ(x̃|x)dxdx̃

=

∫
x̃

gθ(x̃, σ)T
∫
x

PS(x)∇x̃qσ(x̃|x)dxdx̃.

Since qσ(x̃|x) = N (x̃;x, σ2I), it is bounded by qσ(x̃|x) ≤ N (x;x, σ2I). As a
result, we can take the derivative outside of the integral

∫
x
PS(x)∇x̃qσ(x̃|x)dx:

Ex∼PS ,x̃∼qσ(x̃|x)
[
gθ(x̃, σ)T∇x̃ log qσ(x̃|x)

]
=

∫
x̃

gθ(x̃, σ)T∇x̃
(∫

x

PS(x)qσ(x̃|x)dx

)
dx̃

=

∫
x̃

gθ(x̃, σ)TQσ,S(x̃)
∇x̃
(∫
x
PS(x)qσ(x̃|x)dx

)
Qσ,S(x̃)

dx̃

=

∫
x̃

gθ(x̃, σ)TQσ,S(x̃)
∇x̃Qσ,S(x̃)

Qσ,S(x̃)
dx̃

=

∫
x̃

gθ(x̃, σ)TQσ,S(x̃)∇x̃ logQσ,S(x̃)dx̃

= Ex̃∼Qσ,S
[
gθ(x̃, σ)T∇x̃ logQσ,S(x̃)

]
At this point, we can conclude that by setting C = C1 − C2, we will have
`direct(σ, S) = `denoise(σ, S) +C. So optimizing either of `direct or `denoise will give
the same optimal θ, which concludes the proof.

C Implementation Details

C.1 Network architecture

Auto-encoding For auto-encoding, our model takes 2D or 3D shape point cloud
X as input to the encoder, which follows the architecture proposed by [49], and
outputs the 128-dimensional latent code z for each shape.

For the decoder, we train several noise level σ at the same time. To condition
on different noise level, we concatenate the noise level σ at the end of latent code

Learning Gradient Fields for Shape Generation 23

z. The input point cloud X has 800 or 2048 points x in total, and each point is
concatenated with latent code z and σ yielding a 131 or 132 dimensional input
for the decoder (depending if the point cloud is in 2D or 3D).

Following the architecture used by OccNet [39], first the input is scaled
with a fully-connected layer to the hidden dimension 256. Then there are 8
pre-activation ResNet-blocks with 256 dimensions for every hidden layer, and
each Res-block consists of two sets of Conditional Batch-Normalization (CBN), a
ReLU activation layer and a fully-connected layer. The output of these two sets
is added to the input of the Res-block. Then the output of all the Res-blocks is
passed through another set of CBN, ReLU and FC layer, and this is the final
output of the model – a 3-dimensional vector describing the gradient for the
input point.

The CBN layer takes the concatenated input as the latent code z̃ = [x, z, σ].
The input z̃ is passed through two FC layers to output the 256-dimensional
vectors β(z̃) and γ(z̃). The output of the CBN is computed according to:

fout = γ(z̃)
fin − µ√
σ′2 + ε

+ β(z̃), (16)

where µ and σ′ are the mean and standard deviation of the batch feature data
fin. During training, µ and σ′ are the running mean with momentum 0.1, and
they are replaced with the corresponding running mean at test time. Figure 6
describes the architecture of our decoder sθ.

Generation For generation, based on the pretrained auto-encoder model, we
use l-GAN to train the latent code generator. Specifically, we train our GAN
with WGAN-GP [26] objective. We use Adam optimizer (β1 = 0.5, β2 = 0.9)
with learning rate 10−4 for both the discriminator and the generator. The latent-
code dimension is set to be 256. The generator takes a 256-dimensional noise
vector sampled from N (0, 0.22I256), and passes it through an MLP with hidden
dimensions of {256, 256} before outputting the final 256-dimensional latent code.
We apply ReLU activation between layers and there is no batch normalization.
The discriminator is a three-layers MLP with hidden dimension {512, 512}. We
use LeakyReLU with slope 0.2 between the layers. We fixed both the pretrained
encoder and decoder (i.e. set into evaluation mode). The latent-GAN is trained
for 5000 epochs for each of the category.

C.2 Experimental setting

For all the experiments, we use an Adam optimizer. We use ten different σ’s
ranging from 1 to 0.01. For the ShapeNet dataset, the learning rates are 1× 10−4

for decoder and 1× 10−3 for encoder, with linear decay starting at 1000 epoch,
reaching 1 × 10−5 and 1 × 10−4 for the encoder and the decoder, respectively.
For the MNIST-CP dataset, the learning rate starts with 1× 10−3 for both the
decoder and encoder, with linear decay starting at 1000 epoch, ending at 1×10−4.
Each batch consists of 64 shapes (or 200 shapes for the MNIST-CP dataset). We
train the model for 2000 epochs. For inference, we set T = 10 and α = 2× 10−4.

24 Cai et al.

Fig. 6. The gradient decoder network sθ. For each layer, the spatial size is specified
on top. The input point x is concatenated to the latent code z and noise level σ. The
output of sθ is the gradient corresponding to the given point.

C.3 Baselines

In this section, we provide more details on how we obtain the reported scores for
alternative methods.

PointFlow [64] To get the results for ShapeNet, we run the pre-trained checkpoint
release in the official code repository1. The auto-encoding results for MNIST is
obtained by running the released code on the pre-processed MNIST-CP dataset.

AtlasNet [25] The code we used for the AtlasNet decoder comes from the official
code repository2. To enable a fair comparison, we use the same encoder as used
in the PointFlow repository, and set the latent code dimension to be the same as
our own model. We use the suggested learning rate and optimizer setting from
the AtlasNet code-base and paper during training. We train AtlasNet for the
same amount of iterations as our method to obtain the reported performance in
Table 1 in the main paper.

l-GAN and r-GAN [2] We modify the official released code repository3 to take
our pre-processed point cloud from ShapeNet version 2 [7,8]. The auto-encoding
results (i.e. Table 1 in main paper) for l-GAN and r-GAN are obtained by
running the official code for the same number of iterations as our model. The
generation results for r-GAN in Table 3 in the main paper is obtained by running
the latent-GAN in the official code for the default amount of iterations in the
configuration.

GraphCNN-GAN [59] We use the official code released in this repository to
obtain the results: https://github.com/diegovalsesia/GraphCNN-GAN.

1 https://github.com/stevenygd/PointFlow
2 https://github.com/ThibaultGROUEIX/AtlasNet
3 https://github.com/optas/latent_3d_points

https://github.com/diegovalsesia/GraphCNN-GAN
https://github.com/stevenygd/PointFlow
https://github.com/ThibaultGROUEIX/AtlasNet
https://github.com/optas/latent_3d_points

Learning Gradient Fields for Shape Generation 25

TreeGAN [52] We use the official code released in this repository to obtain the
results: https://github.com/seowok/TreeGAN.git.

D Additional Quantitative Results

D.1 Shape generation

We compare our method’s performance on shape generation with GraphCNN-
GAN [59] and TreeGAN [52] in Table 5 (in addition to the comparisons to r-
GAN [1] and PointFlow [64] which we report in the main paper). As discussed in
the Related Work section (Section 2 in the main paper), both of these two baselines
treat generating point clouds with N points as predicting a fixed dimensional
vector (in practice predicting a N × 3 vector but they could potentially use
more upsampling layers to predict more points), using the same discriminator
as r-GAN [2]. These works report performance for models trained on smaller
collections (i.e. the ShapeNet Benchmark dataset4) using different splits and
normalization. Therefore, in addition to comparing their publicly available models
(in the first rows), we retrain their models on the full ShapeNet collections using
the same splits and preprocessing performed on our trained models (in the rows
marked with an asterisk (∗)). For each model, the training is performed over two
days with a GeForce GTX TITAN X GPU.

Table 5. Additional shape generation results. Rows marked with an asterisk (∗) denote
retrained models. ↑ means the higher the better, ↓ means the lower the better. MMD-CD
is multiplied by 103 and MMD-EMD is multiplied by 102.

MMD (↓) COV (%, ↑) 1-NNA (%, ↓)

Category Model CD EMD CD EMD CD EMD

Airplane

GCN [59] 2.623 15.535 9.38 5.93 95.16 99.12
GCN [59]∗ 44.93 35.52 1.98 1.23 99.99 99.99
Tree [52] 1.466 16.662 44.69 6.91 95.06 100.00
Tree [52]∗ 1.798 24.723 31.60 5.43 95.43 99.88
Ours 1.285 7.364 47.65 41.98 85.06 83.46

Train 1.288 7.036 45.43 45.43 72.10 69.38

Chair

GCN [59] 23.098 25.781 6.95 6.34 86.52 96.48
GCN [59]∗ 140.84 0.5163 1.67 1.06 100 100
Tree [52] 16.147 36.545 40.33 8.76 74.55 99.92
Tree [52]∗ 17.124 26.405 42.90 20.09 77.49 98.11
Ours 14.818 18.791 46.37 46.22 66.16 59.82

Train 15.893 18.472 50.45 52.11 53.93 54.15

4 https://shapenet.cs.stanford.edu/ericyi/shapenetcore_partanno_

segmentation_benchmark_v0.zip

https://github.com/seowok/TreeGAN.git
https://shapenet.cs.stanford.edu/ericyi/shapenetcore_partanno_segmentation_benchmark_v0.zip
https://shapenet.cs.stanford.edu/ericyi/shapenetcore_partanno_segmentation_benchmark_v0.zip

26 Cai et al.

We also present generation results for the car category in Table 6. Our model
achieves performance that’s un-par with the state-of-the-arts.

Table 6. Shape generation results. ↑ means the higher the better, ↓ means the lower
the better. MMD-CD is multiplied by 103 and MMD-EMD is multiplied by 102.

MMD (↓) COV (%, ↑) 1-NNA (%, ↓)

Category Model CD EMD CD EMD CD EMD

Car

rGAN [2] 6.233 18.561 8.24 5.11 99.29 99.86
PF [64] 4.207 10.631 39.20 44.89 68.75 62.64
Ours 4.085 10.610 44.60 46.88 65.48 62.93

Train 4.207 10.631 48.30 54.26 52.98 49.57

In Figure 7, we show convergence curves for our method and for PointFlow [64]
on the auto-encoding task (over the Airplane category). As the figure illustrates,
our method converges much faster and to a better result.

0 10 20 30 40 50
Training time (Hour)

0

1

2

3

4

C
D

(⇥
10

4
)

Ours

PointFlow

Oracle

0 10 20 30 40 50
Training time (Hour)

1.5

2.0

2.5

3.0

3.5

4.0

E
M

D
(⇥

10
2
)

Ours

PointFlow

Oracle

Fig. 7. Convergence curves for PointFlow [64] and our method on the auto-encoding
task. As illustrated above, our method converges much faster to a better result.

D.2 Implicit surface

In this section, we demonstrate that one can use MISE [39], an octree-based
marching cue algorithm, to extract a ground truth mesh that from the learned
gradient field. We compute ground truth meshes for the test set of the airplane
category following DeepSDF’s set-up. As mentioned in Section 1 of main paper,
prior implicit representations [11][39][47] require knowing the ground truth meshes
in order to provide a supervision signal during training, while our model can be
trained solely from sparse point clouds. We conducted a preliminary quantitative

Learning Gradient Fields for Shape Generation 27

Table 7. Implicit surface results on Airplane category. CD is multiplied by 104 and
EMD is multiplied by 102.

Metrics AtlasNet-Sph. AtlasNet-25 DeepSDF Ours

CD 1.88 2.16 1.43 1.022
CD (median) 0.79 0.65 0.36 0.442
EMD 3.8 4.1 3.3 5.545
Mesh acc 0.013 0.013 0.004 0.008

Table 8. Architecture ablation study, comparing auto-encoding performance on the
Airplane category. CD is multiplied by 104 and EMD is multiplied by 102. The ablated
models are detailed in the text.

Metrics (a) (ab) (abc) (bd) (abcd)

CD 1.234±0.007 0.992±0.002 0.998±0.003 1.011±0.008 0.987±0.001
EMD 2.718±0.039 2.513±0.019 2.493±0.010 2.462±0.042 2.524±0.001

comparison between our implicit surface and that of DeepSDF[47]. We follow
DeepSDFs experiment set-up to report results on the airplane category in Table7.
Our implicit surfaces outperforms AtlasNet in both CD and Mesh accuracy
metrics and are competitive with DeepSDF (which uses more supervision) in CD.
Failure cases for our extracted meshes usually comes from the bifurcation area
(i.e. the local minimums and saddle points) where gradients are close to zero.
Another problem with our extracted surface is that marching cue tend to create
a double surface around the shape, As our focus is generating point clouds, we
will leave the improvement of surface extraction to future work.

E Additional Ablation Studies

Next we report results of additional ablation studies to evaluating several design
considerations and our choice in modeling the distribution of shapes.

Network architecture We evaluate different architectures considering the following:

(a) Replacing BN with CBN.
(b) Adding shortcuts.
(c) Replacing the latent code z with z̃ = [x, z, σ] for the CBN layer.
(d) Concatenating the latent code z and σ to x as input for the decoder.

In Table 8 we report multiple configurations, with the rightmost one (abcd)
corresponding to our full model. For each model, we perform 3 inference runs,
and report the average and the standard deviation over these runs. As the table
illustrates, our full model yields better performance as well as significantly smaller
variance across different runs.

28 Cai et al.

Modeling the distribution of shapes In our work, we propose a new approach of
modeling the distribution of points using the gradient of the log density field.
To model the distribution of shapes, we use a latent GAN [1]. Next, we explore
a different method to model the distribution of shapes. Specifically, we train a
VAE using the same encoder and decoder setting as the one used in Section 4.2
in the main paper. We double the output dimension for the encoder so that it
can output both µ and σ for the re-parameterization. We add the KL-divergence
loss with weight 10−3 and train for the same amount of time (in terms of epochs
and iterations) as the model reported in the main paper. The results for the
Chair and Airplane categories are reported in Table 9. We can see that our
reported model, which uses a two-stage training with a latent-GAN, outperforms
the model trained with VAE for both the Chair and the Airplane category on all
metrics, except for the 1-NNA-EMD metrics on Airplane.

Table 9. Modeling the distribution of shapes using different techniques. We compare
our model’s performance on the generation task against a VAE model. ↑ means the
higher the better, ↓ means the lower the better. MMD-CD is multiplied by 103 and
MMD-EMD is multiplied by 102.

MMD (↓) COV (%, ↑) 1-NNA (%, ↓)

Category Model CD EMD CD EMD CD EMD

Airplane
VAE 1.909 9.004 37.78 38.27 89.14 86.05
Ours 1.332 7.768 39.01 43.46 88.52 86.91

Train 1.288 7.036 45.43 45.43 72.10 69.38

Chair
VAE 18.032 20.903 41.99 43.81 74.17 74.92
Ours 14.818 18.791 46.37 46.22 66.16 59.82

Train 15.893 18.472 50.45 52.11 53.93 54.15

F Additional Qualitative Results

Scanned data To demonstrate that our technique can also model partial and
incomplete shapes, we use scanned point clouds captured using a hand-held
3D scanner, as detailed in Yifan et al.[66]. For each scanned object, we train a
separate model, evaluating to what extent we can obtain a high-fidelity point
cloud reconstruction for these scanned objects. See Figure 8 for a qualitative
comparison of the input scanned objects which contain roughly 600 points (left
columns), reconstructed point clouds (middle columns) and extracted implicit
surfaces (right columns). While we cannot model the full shape in this case
(as we are only provided with a partial, single view), our technique enables
reconstructing a denser representation even in this sparse real setting.

Learning Gradient Fields for Shape Generation 29

Fig. 8. Autoencoding scanned shapes. Above we demonstrate our technique on sparse
point clouds captured with a 3D scanner (left). We sample 10K points to obtain the
point clouds illustrated in the middle and also extract the implicit surfaces (right).

Fig. 9. Visualization of the latent space.

Visualization of latent space We visualize the latent code space in Figure 9. We
first obtain all latent code z ∈ R128 by running the encoder on the validation
set of Airplane, Car, and Chair. We run T-SNE [38] on the latent code for
the same category to reduce the latent-codes’ dimensionality down to 2. These
2-dimensional latent codes are then used to place rendered reconstructed point
clouds on the figure. The figure shows that the latent code places similar shapes
nearby in the latent space, which suggests that we learn a meaningful latent
space.

Extended visualizations for 2D and 3D point clouds In Figure 10, we demonstrate
our annealed Langevin dynamic procedure for 2D point clouds from MNIST-CP.
We also show that our model is insensitive to the choice of the prior distribution
in the 2D case in Figure 11. We show more results on the ShapeNet dataset in
Figure 12 (auto-encoding shapes), Figure 13(auto-encoding point clouds), Figure
14 (shape generation), and Figure 15 (shape interpolation).

30 Cai et al.

x0 x5 x10 x15 x20 x25 x30 x35 x40 x45 x50 GT

Fig. 10. Point cloud sampling on the MNIST-CP dataset. Above we illustrate our
annealed Langevin dynamics procedure for 2D shapes. Starting with points sampled
from a uniform distribution, the points gradually move along the logarithmic density
field. As illustrated on the right side, eventually these points are mostly indistinguishable
from the ground truth point clouds.

sR
es

u
lt

s
(d

iff
er

en
t

p
ri

o
rs

)
ss

ss
sG

T

Fig. 11. Reconstructing MNIST-CP shapes (illustrated on top), starting from different
prior distributions. Above we demonstrate reconstruction results obtained starting from
a uniform (second row), Gaussian (third row) or a single point (fourth row) distribution.
As the figure illustrates, our method is insensitive to the prior distribution.

Learning Gradient Fields for Shape Generation 31

Fig. 12. Examples of reconstruction results. The first row depicts reconstructed shapes
from the Airplane, Car and Chair categories. The second row is the corresponding
implicit surfaces.

32 Cai et al.

Fig. 13. Examples of reconstruction results on the Airplane, Car and Chair categories.
For each category, the first row is the input point cloud, and the second row is the
up-sampling output point cloud.

Learning Gradient Fields for Shape Generation 33

Fig. 14. Examples of generation results on the Airplane, Car and Chair categories.

Sampled Interp Interp Interp Interp Sampled

Fig. 15. Generation and interpolation results. Generated point clouds (Sampled) and
the interpolated results between two generated shapes (Interp) are illustrated.

